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Introduction

The conditional rate-distortion function has proved useful in source

coding problems involving the possession of side information such as in

simple networks and sources with memory. Many of the basic properties of

4 conditional rates, however, are lengthy but relatively straightforward

extensions of the usual theory. Hence, these results have not appeared

in the papers corocerned with the applications of conditional rates. The

purpose of this report is to present these basic definitions, coding

theorems and bounds so as to provide a complete background reference for

the journal papers on composite bounds for data compression performance

attainable with sources with memory [81 and on source coding for simple

networks [5].

Definitions and Preliminaries

Joint Rates

The joint rate-distortion function of a vector source U = (U1,U2,

... ,Un) and a vector-valued distortion measure D(u,D) = (,u),k=l,
n k '

A

... ,ml defined on A(U) X P(U) is defined as follows:

RUM inf I(Ud

where -

£
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if

a) Pt~iu 0

b) Pt(alu) = 1

u4A(u) fiC11 )Pt(.•uQuD _ua.. •

k = 1,2,...,m

and

ueA(U) iUEQ()

I U

Where fD(U) is the set of letters for which w(u) may be strictly

positive.

It can be shown straightforwardly that RU(5) is a convex U func-

tion of 5 as Gallager has shown for the scalar source and distortion

measure case [1, pp. 445-4461.

Since the argument of the multiple-constraint rate is a vector, the

inverse rate-distortion function or distortion-rate function will be a

surface in m-space for each value of its scalar argument. The distortion-

rate function is given by the surface 1)(R) = A RU(A) =RI. Since

R (A) is a convex function of . the surface u(R) will be the lowerU -A ~U
boundary of a convex region in m-space, i.e., if AL1 ,62 e u(R), then

A, + (1 - Ž)6 > •¢R) for any 0 < ? < 1.
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Although RU( 5 ) is defined for the same source as is H(J), coding

theorems can be proved showing it to be the equivalent entropy rate

(rather than entropy) of a reproduction (compressed) sequence of

the i.i.d. vector source sequence 1Uk4 subject to a vector-valued

fidelity criterion. Such coding theorems are immediate extensions of

those for the usual rate distortion function with a single argument 3

L1, Section 9.3], [2, Chap. 3) and hence are stated here without proof,

after the necessary notation is introduced.

Let tUk~kl be an i.i.d. sequence of vectors (n-tuples) u

'(N)(uk,luk2 ,...,uk, n). Denote a block of N vectors by u ( = (u ...

UN ); the superscript N will be suppressed whenever possible. Assume

the distortion measure between blocks of vectors is a single-vector dis-

tortion measure, i.e.,

N
-l N > D(uG•(k•N k -k'!)

where D(Uk,) is the per-vector distortion measure.

An encoder with parameters (N,M) is defined as a mapping

fE: A(U) N -) I.M A,2,

A decoder corresponding to fE is defined by the mapping

f T I + lNfD • M~ • .

An encoder-decoder is applied as follows: If fE~() = i M' then

..(N) A N
() = D () Me The encoder-decoder has average distortion 5 if

"E DN(uG^) 5-6 , in which case we have a code with parameters (',NM).

A nonnegative number R is called 5-attainable if for arbitrary E > 0

3
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and N sufficiently large, there exists a code (p + 5 c,N,M), = (E,

6, ... ,E), where

M <5 explN(R + E

Theort.. 1: (Source Coding Theorem)

Given an i.i.d. vector source 1Uk1 and a single-vector vector-valued

distortion measure, then the rate R U(5) + E is 5-attainable.

Theorem 2: (Converse Source Coding Theorem)

Given the source and distortion measure of Theorem 1, no rate smaller

than Ru(b) is 5-attainable. The converse theorem can also be stated as

follows: If 5 < 2(R), then the rate R is not 5-attainable.

Unlike as in Berger (2, Chap. 3], the above theorems are stated in

terms of 8-attainable rates rather than 5-admissible codes. The above

terminology adapts more readily to the coding theorems and examples con-

sidered here and in [51 and [8].

The evaluation of R (5) is in general complicated. The immediate
U-

extension of the Kuhn-Tucker minimization of single constraint rate dis-

tortion functions (1, p. 459], [2, p. 37] yields

SU(5) = HU) + max I U (u) log fu(-) -_ T (1

AU P a: , 1 C (p) CA(U-

where T stands for transpose and where f = f(P) = uf (p), uuE A(U)4 E (Q)

if

Mi f (2) 2:

(i) Y )T -l A

(ii) fu P) e-2(-Ul' :5 1, u - fK(U)

u A(U)
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Necessary and sufficient conditions on f to yield the maximum in (1)

are

(iii) that there exist a nonnegative solution w(A) to

f (p)u e72(U'2AT = uu ; u eA(U
u 6

and

(iv) that (ii) hold with equality for all N such that

W(A) > 0.

A
When A(U) = 1(U), we can lower bound RU(5) by solving (ii) with

equality for all eA(U) and inserting the result into (1). This f

will yield R (5) if the auxillary conditions (iii) and (iv) are satis-
U ~

fied. The remaining maximization over P simply involves taking deriva-

tives and will yield parametric expressions for R (5) and 5. The

A(U) = sl(U) condition is crucial since only in this case does (ii) with

equality become IIAMj•II equations in IIA(C)II unknowns, where IIA(.)II

denotes the size of the alphabet. The properties of this bound--called

the extended Shannon lower bound (ESLB)--are an immediate extension of

the Kuhn-Tucker minimization and are summarized below sans proof.

Theorem 3: Define the vector VP) ={(cpu(P) uE A(U) as the non-

negative solution (if it exists) to

(P(p) E = (2a)

where

E= {exp f~D(AU~)P) U, A(I)} (2b)

5



and p =i,...,#M is a vector having nonnegative entries. Define

(L (8) = H(U) + ma -x 0QU log c(Pu() b P (2c)u ~ £=~oueA(U)~

Since c(P(p)e (p) we have

R (8) - R(L)() (3)U U

Furthermore, (3) will hold with equality iff there exists a zonnegative

solution w(R) to (iii) with f =P.

To be properly careful we should worry about the existence of a

nonnegative solution to the IIA(u)IQ equations in IIA(U)II unknowrs de-

scribed by (2). A straightforward extension of arguments in [6] based

on a fundamental result of Jelinek [4J yield the following sufficient

condition for Vghtness of R (8) for a region of small 8.
U- ~

Theorem 4: Given the vector source U, a distortion measure satisfying
D(u,A) > D(u,u) = (P, and an available reproduction alphabet Q(U) = A(U),

there exists a surface c(U) containing strictly positive elements such

that

R(M = -(L) (8) u)"U =U -=

The surface D (U) is called the cutoff, or critical distortion surface.

As discussed in [8], the most useful types of per-vector distortion

measures are compound and weighted-average distortion measures. The

joint rate with a weighted-average distortion measure with weights

(ax''".,an) can be obtained from the joint rate with a compound distor-

tion measure as follows: Consider a weighted-average m-valued distortion

measure with per-letter distortion measures di(uiCi), i=u....n. We

have from the definitions that

6



RU(Z 6 inf RU(.•,o.,,n) (4a)

.Xk L_ ~ (4b)

k=l

Since RU(%,...,Ah) is a convex U function of ( Gallager's

Theorem 4.4.1 [1, p. 81] cat. be extended to show that the above 1.i-imum

occurs at the value of (A,,,...,An1), say (,,.. ,6), which is in !D(6)

and satisfies the following condition: Define = (isk,lk,2i... INkOm)'

then

with equality for all k such that > 0. The above condition can

be abbreviated to the statement that the slopes of RU(4,..., ) in

the jth coordinate in each of its n-vector arguments equals the slope

of R (A) in its jth coordinate.
U ~

Despite the apparently circuitous way of finding a v..)ihted-average

distortion measure, (4) later proves quite useful in [8, It shoulo be

pointed out that, even though the equal-slope condition appears horrendous,

rate-distortion functions are usually evaluated as parametric expressions

for the rate and distortion in terms of the slope. Hence, in actuality,

this condition usually simplifies such evaluations.

77
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Conditional Rates

Given the two-dimensional source XY described by Q(x,y) and

A(XY), the induced marginal source Y described by Q(y) and A(y),

and for each ye A(Y) the marginal source X described by Q(xly)Y

and A(Xjy), define the conditional rate-distortion function of X

given Y as

R (1 = Inf I(X;^XIY)RX~~~y(•* pt( I xY) •PIyL

where

Txiy(A) =p s p (RIx,y) : E D(x,•) =

t ^• Pt (X[^x,y) Q(x,y) D?(x,X)•

XxtXY

The following theorem relates the conditional rate-distortion function

to a weighted sum of marginal rate distortion functions.

Theorem 5

RXIy(A) = Inf > RXiy(•y)Q(Y)(Ay CDC •)(• Y € (Y)
SyEA(Y

where RXy(G) is the marginal rate- listortion function of the single

source X, and

y E Ay(Y)A

Proof:

First choose a set I A.t such that

y

8
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and then choose IIA(Y)II test channels pt(.1x,y) p PXjy(•y), ye AM

where PIly(Ay)= Pt( IxY) E D(x,A) -- AY Then

Q(y) 3D(x,x) pt( x,Y) Q(xIy) x= Q(y) X I A

A y
y x,x

and hence p ('IxY) E PXIy(6). Thus for any such set of test chanrnels

• ;X=y) Q(y) I (x;'21X IY Rx y(

Y

so that choosing each test channel p (•%x,y), ye A(Y), to yield

Rx y(y), we have

SQ(y) RXIy( AY) RXIy () (6)

y E A(Y)

for any set Ay yeA(Y)I satisfying (5).

Next choose a test channel pt( Ix, ) XIY(A). This test channel

will result in some set of conditional distortions defined by

a* ••"p(AIx,y) Q(xlY) D(x,X'^)

y t
A
x,x

such that

A* Q(y)
-y

y E A(Y)

For any such test channel

9



I;I
i(x ;XIY) Y Q(y)

y e A(Y)

_I

"7 ~I

z Rx! (A*) Q(y)

y A(Y)

It
(Ay E hA) ye A(Y)

Choosing p (•x"'IXy) to yield RXIy(A1 gives

which, with (6) proves the theorem.

Similar to (4), Gallager.'9 Theorpm 4.4.1, [1, p." 87] implies that

the infimum in Theorem 5 is achieved by adding up the rate-distortion

functions at points of equal slope In all coordinates, i.e.,

I I

Rxl (A) (y =y My) (7a)

y c A(Y)

where

7f y) c .•( , 
(7b)

and for each k=1,...,m

• N ly (&y) =PI Y~ (L') 'p'y' E A (Y). (7c )

In general X and Y may themselves be vector sources. For simplicity,

however, we shall here xemain with scalar notation.

10
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The appropriate coding theorems for conditional rate-distortion

"functions are slightly more complicated to state than Theorem 1 due to

the presence of the side information. Some of the definitions must be

modified accordingly. An encoder with parameters (n,M) is now defined

as a mapping

f : A(XY)n -1M

A decoder corresponding to fE is defined by the mapping

f : X A(Y)n _, ,(X)n
D M

An encoder-decoder with parameters (n,M) is applied as follows: Let

fE(x,z) = i r IM, then = fDliU,). The encoder-decoder has average

bistortion A if

where the expectation is now over the joint ensemble XY. In such a

case we have a code (A, n, M). As before, a rate R is said to be

A-attainable (conditioned on Iyk1) if for arbitrary E > 0 and n-
-I

sufficiently large, there exists a code (A + E, n, M) where

M 5 expjn(R + eli

Theorem 6: (Conditional Source Coding Theorem)

Given an i.i.d, sequence of dependent pairs J(xk )I and a single-

vector distortion measure, assume that both encoder and decoder are al-

lowed to observe perfectly the sequence ykI1 . Then, the rate RXly(A)

is A-attainable, and no rate smaller than RXjy(Q) is A-attainable.

11



The above theorem can be proved using a fairly straightforward

extension of the usual techniques t2, Section 3.2). We get a coding

theorem for free, however, by noting that (7) is almo3t identical to

Berger's (6.1.21) [2, p. 184] and hence is the (multiple-constraint)

rate-distortion function of an i.i.d. composite source with "switch"

pmf Q(y) and IIA(Y)I1 subsource pmf's Q(xly), yEA(Y).

Note the obvious similarity between (7) and the corresponding

entropy relation

H(XIY) H(Xly)Q(y)

"y E A(Y)

One implicit difficulty with conditional ra-tes is the choice of the

appropriate reproducing alphabet for each yE A(Y). There are two

natural choices--either the corresponding conditional source alphabet

A(Xly) or the full alphabet

A(X) = U A(Xly).
y E A(Y)

For greatest ease in evaluating RXIy(A) it is desirable to have iden-

tical source and available reproducing alphabets, as previously noted.

Specifically, the ESLB is well defined only for this case. Thus, the

happiest possible state of affairs would be if Q(Xly) = A(Xly) for

each y. Unfortunately, however, the assumption usually required is that

the reprodu.ing alphabet i(Xly) be A(X) for each y. Thus, in gen-

eral, we may have

A(Xjy) X a(•jy) = A(X)

12



and hence actual evaluations of RXIy(A) may be quite complicated be-

cause the matrix E of (2b) is not square and not invertible.

If A(X) = A(Xly), all yeA(Y), then RXIy(A) usually can be

evaluated straightforwardly. An equivalent assumption is that the alpha-

bet A(XY) is the cartesian product of the marginal alphabets, i.e.,

A(XY) = A(X) X A(Y). In order to obtain some reasonably general bounds

and evaluations for the rate-distortion functions in the theorems, we

occasionally assume that A(XY) = A(X) x A(Y). This assumption is not

made in the more general theorems. IF A(XY) = A(X) x A(Y) the ESLB of

Ry1X I ) is well defined as the weighted sum of the individual ESLB's:

RXy (A) = Inf I RXIy(Ay) Q(y)
1Ay TA y

> Inf Nl(A)Q(Y) l(A

(L)
where ~ly(A) is given by (2) with U =X . The infimum is obtained

by adding up the functions at points of equal slope in each component.

As in The..orem 4, we have the following result:

Corollary 1: If A(XY) =A(X) X A(Y) and (4) is satisfied, then there

exists a cutoff distortion surface Db (XIY) > 0 such that

(L) c(XIy)RX ly (A) N R• y (A),

Difference Distortion Measures and Examples

The calculations involved in evaluating conditional rates are often

simpler when dealing with difference distortion measures. Roughly

13



speaking, given a conditional rate-distortion fun.ction and a difference

distortion measure, there exists a simple upper bound which actually

yields the conditional rate iff the source satisfies a certain property.

Theorem 7: Let a product ensemble XY and a difference distortion

measure be given. Then for any function f(y) defined on A(Y)

RxI y() = X-f(Y) () S - Rxf(y)

with equality 1ff y and x - f(y) are independent.

Proof: Define z = x - f(y). Given a source pmf QX y(x y) we will.

have also the source pmf

QzIy(ZIy) = Qxfy(Z + f(y)jy)

since x = z + f(y). Furthermore, any test channel pt (1)x^xy)x ? Iy(L)

s(i)ce

induces a test channal p-2)(^zy) = Pt (z + f(y)Iz + f(y),y) E ?Zly(.)

since

Ejd(Z-',y)jy. = d( -z) p(2)(.!z,y) QzIy(Zy)
Ez iA(ZIy)

z SI(2(1y)

A (i).

- d(X -x) P( (Xlx'y) QX (x!y)
x cA(XIy) Pt Xj

2 ()^x , y)

For the test channel p '()Ixy) we have

I(X;Aly) H(Xly) - H(XIX^y) = H(X + f(y)iy) - H(X + f(y)IX + f(y),Y)

I(Z;Zly)

14
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Choosing p (1() Jx,y) to yield RXIy(A) we have
Ptly

RXy(A) = I(Z;2 1y) _• Rzly A) (8)

By defining x = z + f(y) and repeating the previous procedure with

and z interchanged we obtain

(XIYA() 5 Ry A) (9)

Eq. (9) implies the left hand equality in Theorem 7. The right hand

inequality follows from Thenrem 2.1 of [8].

This theorem can be used to provide an alternate evaluation of the

conditional rates in the examples of [8]. In the binary example f(y) = y

and the source x can be viewed as the mod-2 sum of two independent

random variables y and z where

1
Q(y) = , y = O, 1

5 1-5

Q(z) = ( z,p z)O

The Gaussian case can be viewed similarly. Perhaps a more interesting

view of the Gaussian case is to choose the function f(y) such that

x - f(y) and y are independent. It is well known that this is ac-

complished by choosing the conditional expectation

a X

f(y) = E xly = mx + r (y - my)

Thus Rxy(A) = RXf(y)(A) is simply the marginal rate-distortion func-

tion of a zero mean Gaussian random variable with variance 2 (1 - r 2

Y

15



It is worth observing that in both of the preceding examples the

conditional rate of x given y is tho marginal rate of the "innova-

tion" V = x - x(y), where x(y) is the best estimate of x given y,

i.e., the estimate that minimizes E d(x,x(y)).

16
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